Committed to Advancing Transcatheter Heart Valve Therapy

Edwards SAPIEN XT Transcatheter Heart Valve

Approved for Pulmonic Procedures

The SAPIEN XT valve is approved for pulmonic procedures in pediatric and adult patients with a dysfunctional, non-compliant right ventricular outflow tract (RVOT) conduit.

SAPIEN XT Valve Sizing—Pulmonic

<table>
<thead>
<tr>
<th>Diameter of intended location within the conduit</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 mm</td>
</tr>
<tr>
<td>20-23 mm</td>
</tr>
</tbody>
</table>

Edwards Lifesciences is driving the innovation, collaboration, and education needed to bring transcatheter technology to more patients worldwide.

» Visit Edwards.com/pulmonic for more information
EDWARDS SAPIEN XT TRANSCATHETER HEART VALVE WITH THE NOVAFLEX+ DELIVERY SYSTEM – PULMONIC

Indications: The Edwards SAPIEN XT transcatheter heart valve (THV) systems are indicated for use in pediatric and adult patients with a dysfunctional, non-compliant right ventricular outflow tract (RVOT) conduit with a clinical indication for intervention and: pulmonary regurgitation ≥ moderate and/or mean RVOT gradient ≥ 35 mmHg.

Contraindications: The THV and delivery system are contraindicated in patients with inability to tolerate an anticoagulant/antiplatelet regimen or who have active bacterial endocarditis.

Warnings: The devices are designed, intended, and distributed for single use only. Do not resterilize or reuse the devices. There are no data to support the sterility, nonpyrogenicity, and functionality of the device after reprocessing. Assessment for coronary compression risk prior to valve implantation is essential to prevent the risk of severe patient harm. Incorrect sizing of the THV may lead to paravalvular leak, migration, embolization and/or RVOT rupture. Accelerated deterioration of the THV may occur in patients with an altered calcium metabolism. Prior to delivery, the THV must remain hydrated at all times and cannot be exposed to solutions other than its shipping storage solution and sterile physiologic rinsing solution. THV leaflets mishandled or damaged during any part of the procedure will require replacement of the THV. Do not use the THV if the tamper evident seal is broken, the storage solution does not completely cover the THV, the temperature indicator has been activated, the THV is damaged, or the expiration date has elapsed. Do not mishandle the NovaFlex+ delivery system or use it if the packaging or any components are not sterile, have been opened or are damaged (e.g. kinked or stretched), or the expiration date has elapsed. Use of excessive contrast media may lead to renal failure. Measure the patient’s creatinine level prior to the procedure. Contrast media usage should be monitored. Patient injury could occur if the delivery system is not un-flexed prior to removal. Care should be exercised in patients with hypersensitivities to cobalt, nickel, chromium, molybdenum, titanium, manganese, silicon, and/or polymeric materials. The procedure should be conducted under fluoroscopic guidance. Some fluoroscopically guided procedures are associated with a risk of radiation injury to the skin. These injuries may be painful, disfiguring, and long-lasting. THV recipients should be maintained on anticoagulant/antiplatelet therapy as determined by their physician. This device has not been tested for use without anticoagulation. Do not add or apply antibiotics to the storage solution, rinse solutions, or to the THV.

Precautions: Safety, effectiveness, and durability of the THV have not been established for implantation within a previously placed surgical or transcatheter pulmonic valve. Long-term durability has not been established for the THV. Regular medical follow-up is advised to evaluate THV performance. Glatiramer may cause irritation of the skin, eyes, nose and throat. Avoid prolonged or repeated exposure to, or breathing of, the solution. Use only with adequate ventilation. If skin contact occurs, immediately flush the affected area with water; in the event of contact with eyes, immediately flush the affected area with water and seek immediate medical attention. For more information about glatiramer exposure, refer to the Material Safety Data Sheet available from Edwards Lifesciences. Patient anatomy should be evaluated to prevent the risk of access that would preclude the delivery and deployment of the device. To maintain proper valve leaflet coaptation, do not overinflate the deployment balloon. Appropriate antibiotic prophylaxis is recommended post-procedure in patients at risk for prosthetic valve infection and endocarditis. Safety and effectiveness have not been evaluated for patients with the following characteristics/comorbidities: Echocardiographic evidence of intraventricular mass, thrombus, or vegetation; a known hypersensitivity or contraindication to aspirin, heparin or sensitivity to contrast media, which cannot be adequately pretreated; pregnancy; and patients under the age of 10 years.

Potential Adverse Events: Potential risks associated with the overall procedure including potential access complications associated with standard cardiac catheterization, balloon valvuloplasty, the potential risks of conscious sedation and/or general anesthesia, and the use of angiography: death; respiratory insufficiency or respiratory failure; hemorrhage requiring transfusion or intervention; cardiovascular injury including perforation or dissection of vessels, ventricle, myocardium or valvular structures that may require intervention; pericardial effusion or cardiac tamponade; embolization including air, calcific valve material or thrombus; infection including sepsis and endocarditis; heart failure; myocardial infarction; renal insufficiency or renal failure; conduction system defect arrhythmia; arteriovenous fistula; reoperation or reintervention; ischemia or nerve injury; pulmonary edema; pleural effusion; bleeding; anemia; abnormal lab values (including electrolyte imbalance); hypertension or hypotension; allergic reaction to anesthesia, contrast media, or device materials; hematoma or ecchymosis; syncope; pain or changes at the access site; exercise intolerance or weakness; inflammation; angina; fever. Additional potential risks associated with the use of the THV, delivery system, and/or accessories include: cardiac arrest; cardiogenic shock; emergency cardiac surgery; coronary flow obstruction/ transvalvular flow disturbance; device thrombosis requiring intervention; valve thrombosis; device embolization; device malposition requiring intervention; valve deployment in unintended location; structural valve deterioration (wear, fracture, calcification, leaflet tear/tearing from the stent posts, leaflet retraction, suture line disruption of components of a prosthetic valve, thickening, stenosis); paravalvular or transvalvular leak; valve regurgitation; hemolysis; device explants; nonstructural dysfunction; and mechanical failure of delivery system, and/or accessories.

Edwards Crimer

Indications: The Edwards crimer is indicated for use in preparing the Edwards SAPIEN XT transcatheter heart valve for implantation.

Contraindications: No known contraindications.

Warnings: The device is designed, intended, and distributed for single use only. Do not resterilize or reuse the device. There are no data to support the sterility, nonpyrogenicity, and functionality of the device after reprocessing. Do not mishandle the device. Do not use the device if the packaging or any components are not sterile, have been opened or are damaged, or the expiration date has elapsed.

Precautions: For special considerations associated with the use of this device prior to THV implantation, refer to the SAPIEN XT transcatheter heart valve Instructions for Use.

Potential Adverse Events: No known potential adverse events.

CAUTION: Federal (United States) law restricts this device to sale by or on the order of a physician.

Edwards, Edwards Lifesciences, the stylized E logo, Edwards SAPIEN, Edwards SAPIEN XT, NovaFlex, NovaFlex+, SAPIEN, and SAPIEN XT are trademarks or service marks of the Edwards Lifesciences Corporation. All other trademarks are the property of their respective owners.

© 2017 Edwards Lifesciences Corporation. All rights reserved. PP-US-1832 v1.0
NOW ENROLLING:

Harmony™ Transcatheter Pulmonary Valve (TPV) Clinical Study

WHAT IS THE MEDTRONIC HARMONY TPV CLINICAL STUDY?
The study is a multi-center prospective, non-randomized, interventional pre-market study in the United States. The purpose of the study is to evaluate the safety and effectiveness of the Harmony TPV system in patients who have congenital heart disease and are clinically indicated for pulmonary valve replacement. The trial will involve up to 40 subjects implanted at 10 study centers.

WHO CAN PARTICIPATE?
Patients who have pulmonary regurgitation:
- Severe pulmonary regurgitation by echocardiography, or
- Pulmonary regurgitant fraction ≥ 30% by cardiac magnetic resonance imaging

Patients who have a clinical indication for surgical placement of a RV-PA conduit or prosthetic pulmonary valve:
- Subject is symptomatic secondary to pulmonary insufficiency (e.g., exercise intolerance, fluid overload), or
- Right ventricular end diastolic volume index ≥ 150 mL/m², or
- Subject has RVEDV:LVEDV Ratio ≥ 2.0

HOW CAN I LEARN MORE ABOUT THE HARMONY TPV CLINICAL STUDY?
For additional information about the program, please contact Medtronic at:
RS.HarmonyTPVClinicalStudy@medtronic.com

CAUTION: Investigational Device. Limited by Federal Law (USA) to Investigational Use.
Editorial Board

Editor-in-Chief
- Ziyad M. Hijazi
 - Sidra Medical & Research Center
 - Doha, Qatar

Co-Editor-in-Chief
- Horst Sievert
 - CardioVascular Center
 - Sankt Katharinen Hospital
 - Frankfurt, Germany

Assistant Editors
- Damien Kenny
 - Rush University Medical Center
 - Chicago, IL
- Michael Kim
 - University of Colorado
 - Aurora, CO

Editorial Board
- Teiji Akagi
 - Okayama University
 - Okayama, Japan
- Bagrat Alekyan
 - Bakoulev Scientific Center for Cardiovascular Surgery
 - Moscow, Russia
- Zahid Amin
 - Children's Hospital of Georgia
 - Augusta, GA
- Vasilis Babaliaros
 - Emory University
 - Atlanta, GA
- Steven Bailey
 - University of Texas, San Antonio
 - San Antonio, TX
- Lee Benson
 - Hospital for Sick Kids
 - Toronto, Canada
- Lisa Bergersen
 - Boston Children's Hospital
 - Boston, MA
- Younes Boudjemline
 - Hospital Necker
 - Paris, France
- Elchanan Bruckheimer
 - Schneider's Children's Medical Center
 - Petach Tikva, Israel
- Maurice Buckbinder
 - Stanford University
 - Palo Alto, CA
- Massimo Caputo
 - Rush University Medical Center
 - Chicago, IL
- Mario Carminati
 - San Donato Milanese
 - Milan, Italy
- John Carroll
 - University of Colorado Denver
 - Aurora, CO
- John P. Cheatham
 - Ohio State University
 - Columbus, OH
- Jae Young Choi
 - Severance Cardiovascular Hospital
 - Seoul, Korea
- Antonio Colombo
 - St. Raffaele Hospital
 - Milan, Italy
- Costantino Costantini
 - Hospital Cardiologico Costantini
 - Curitiba, Brazil
- Alain Cribier
 - Charles Nicolle Hospital
 - Rouen, France

Associate Editors
- Clifford J. Kavinsky
 - Rush University Medical Center
 - Chicago, IL
- Bray Patrick Lake
 - PFO Research Foundation
 - Boulder, CO
- John Messenger
 - University of Colorado
 - Aurora, CO
- Roberto Cubeddu
 - Aventura Hospital
 - Miami, FL
- Bharat Dalvi
 - Glenmark Cardiac Centre
 - Mumbai, India
- Jo De Giovanni
 - Birmingham Children's Hospital
 - Birmingham, United Kingdom
- Helene Eltchanninof
 - University Hospital
 - Rouen, France
- Maiy El Syed
 - Ain Shams University
 - Cairo, Egypt
- Thomas Fagan
 - University of Colorado
 - Denver, CO
- Ted Feldman
 - Evanston Northshore Hospital
 - Evanston, IL
- Olaf Franzen
 - University Heart Center Hamburg
 - Hamburg, Germany
- Yun Ching Fu
 - Taichung Veterans General Hospital
 - Taichung, Taiwan
- David Gao
 - Shanghai Children's Medical Center
 - Shanghai, China
- Eulogio Garcia
 - Hospital Clinico San Carlos
 - Madrid, Spain
- Marc Gewillig
 - University of Lueven
 - Lueven, Belgium
- Matt Gillespie
 - Children's Hospital of Philadelphia
 - Philadelphia, PA
- Omer Goktekin
 - Bosphorus Vakif University
 - Istanbul, Turkey
- Steven Goldberg
 - University of Washington
 - Seattle, WA
- William Gray
 - Columbia University
 - New York, NY
- Eberhard Grube
 - Heart Center Siegburg
 - Siegburg, Germany
- Jeff Harrisberg
 - Pediatric Cardiology
 - Gauteng, South Africa
- William E. Hellenbrand
 - Yale University
 - New Haven, CT
James Hermiller The Care Group (Indianapolis, IN) Martin B. Leon Columbia University (New York, NY)
Howard Herrmann University of Pennsylvania (Philadelphia, PA) Daniel Levi UCLA Medical Center (Los Angeles, CA)
David Holmes Mayo Clinic (Rochester, MN) Scott Lim University of Virginia Health System (Charlottesville, VA)
Noa Holoshitz Rush University Medical Center (Chicago, IL) Michael Mack Baylor Healthcare System (Plano, TX)
Ralf Holzer Sidra Medical & Research Center (Doha, Qatar) Francesco Maisano University of Zurich (Zurich, Switzerland)
Eric Horlick University of Toronto (Toronto, Canada) Raj Makkar Cedars Sinai Medical Center (Los Angeles, CA)
Reda Ibrahim Montreal Heart Institute (Montreal, Canada) Robert March Rush University Medical Center (Chicago, IL)
Michel Ilbawi Rush University Medical Center (Chicago, IL) Gwen Mayes VP National Patient Advocate Foundation (Washington, DC)
Frank Ing LA Children's Hospital (Los Angeles, CA) Pat McCarthy Northwestern Memorial Hospital (Chicago, IL)
Alexander Javois Hope Children's Hospital (Oak Lawn, IL) Doff McElhinney New York University (New York, NY)
Thomas Jones Seattle Children's Hospital (Seattle, WA) John Messenger University of Colorado (Denver, CO)
Saibal Kar Cedars Sinai Medical Center (Los Angeles, CA) Friedrich Mohr Herzzentrum Universitaet Leipzig (Leipzig, Germany)
Clifford Kavinsky Rush University Medical Center (Chicago, IL) Tarek Momenah Prince Salman Cardiac Center (Riyadh, Saudi Arabia)
Joseph Kay University of Colorado (Denver, CO) Issam Moussa The Heart Hospital (London, England)
Damien Kenny Rush University Medical Center (Chicago, IL) Michael Mullen St. Vincent's Hospital (Sydney, Australia)
Morton Kern University of California Irvine (Irvine, CA) David Muller St. Vincent's Hospital (Sydney, Australia)
Michael Kim University of Colorado (Aurora, CO) William O’Neill Henry Ford Hospital (Detroit, MI)
Seong-Ho Kim Cheju Halla General Hospital (South Korea) Igor Palacios Mass General Hospital (Boston, MA)
Susheel Kodali Columbia University Medical Center (New York, NY) SJ Park University of Ulsan College of Medicine (Seoul, Korea)
Jackie Kreutzer Pittsburgh Children's Hospital (Pittsburgh, PA) Carlos Pedra Danta Pazzanese Instituto de Cardiologia (Sao Paulo, Brazil)
Shelby Kutty Children's Hospital and University of Nebraska Medical Center (Omaha, NB) Alejandro Peirone Children's Hospital of Cordoba (Cordoba, Argentina)
Bray Patrick-Lake PFO Research Foundation (Boulder, CO) Giacomo Pongiglione Bambino Gesu Hospital (Rome, Italy)
Michael Landzberg Boston Children's Hospital (Boston, MA) Matthew Price Scripps Clinic (La Jolla, CA)
Geoffrey Lane Royal Melbourne Hospital (Melbourne, Australia) Robert Quaife University of Colorado (Denver, CO)
Roberto Lang University of Chicago Medical Center (Chicago, IL) Shakeel Qureshi Evelina Children's Hospital (London, UK)
John Lasala Barnes Jewish Hospital, Washington University (St. Louis, MO) Steve Ramee Oschner Clinic (New Orleans, LA)
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution 1</th>
<th>Institution 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark Reisman</td>
<td>Swedish Medical Center (Seattle, WA)</td>
<td>Vinod Thourani (Emory University (Atlanta, GA))</td>
</tr>
<tr>
<td>John Rhodes</td>
<td>Miami Children’s Hospital (Miami, FL)</td>
<td>Jonathan Tobis (UCLA Medical Center (Los Angeles, CA))</td>
</tr>
<tr>
<td>Charanjit Rihal</td>
<td>Mayo Clinic (Rochester, MN)</td>
<td>Murat Tuczu (Cleveland Clinic Foundation (Cleveland, OH))</td>
</tr>
<tr>
<td>Richard Ringel</td>
<td>Johns Hopkins Medical Center (Baltimore, MD)</td>
<td>Zoltan Turi (Robert Wood Johnson Medical School (Camden, NJ))</td>
</tr>
<tr>
<td>Carlos Ruiz</td>
<td>Lenox Hill Hospital (New York, NY)</td>
<td>Alec Vahanian (Bichat University Hospital (Paris, France))</td>
</tr>
<tr>
<td>Ernesto Salcedo</td>
<td>University of Colorado (Denver, CO)</td>
<td>Joseph J. Vettukattil (Spectrum Health (Grand Rapids, MI))</td>
</tr>
<tr>
<td>Joachim Schofer</td>
<td>Hamburg University Cardiovascular Center (Hamburg, Germany)</td>
<td>Kevin Walsh (Our Lady’s Hospital (Dublin, Ireland))</td>
</tr>
<tr>
<td>Paul Sorajja</td>
<td>Minneapolis Heart Institute Foundation (Minneapolis, MN)</td>
<td>John Webb (St. Paul Hospital Vancouver (British Columbia, Canada))</td>
</tr>
<tr>
<td>Christian Spies</td>
<td>Queen’s Heart Physician Practice (Honolulu, HI)</td>
<td>Brian Whisenant (Intermountain Medical Center (Salt Lake City, Utah))</td>
</tr>
<tr>
<td>Frank Silvestry</td>
<td>University of Pennsylvania Hospital (Philadelphia, PA)</td>
<td>Matthew Williams (Mount Sinai Medical Center (New York, NY))</td>
</tr>
<tr>
<td>Gregg Stone</td>
<td>Columbia University (New York, NY)</td>
<td>Neil Wilson (University of Colorado (Denver, CO))</td>
</tr>
<tr>
<td>Corrado Tamborino</td>
<td>University of Catania (Catania, Italy)</td>
<td>Evan Zahn (Cedars Sinai Medical Center (Los Angeles, CA))</td>
</tr>
</tbody>
</table>
Volume 3, Issue 6, December 2017

ORIGINAL RESEARCH ARTICLE

165 Intentional Fracture of Previously Placed Stents: Impact of Pre-stenting in a Piglet Model
András Bratincsák, William Van Alstine, Lindsay Koren, Kimberly Stoughton, José Negrón-Garcia, Anthony Ragheb, Hannah El-Sabrout, John W. Moore, Howaida el-Said

CASE REPORT

176 Elective Stent Implant in the Obstructed Vertical Vein of Supracardiac Total Anomalous Pulmonary Venous Connection Prior to Operative Repair
Elisa Rhee, John P. Breinholt

180 Successful First-in-Man Concomitant Transapical Transcatheter Aortic and Mitral Valve Replacements for Severe Native Aortic and Mitral Valve Stenosis Using the Edwards Certitude Delivery System
Anwar Tandar, Jason P. Glotzbach, Frederick G.P. Welt, Vikas Sharma, Kelsee Browning, Craig H. Selzman, Abdulfattah Saidi, David A. Bull

187 Improvement in Pulmonary Function After Closure of Atrial Septal Defect in a Patient With Cystic Fibrosis
Abdulfattah Saidi, Holly Carveth, Anwar Tandar

192 Worsening of Functional Mitral Regurgitation from Septal Dyssynchrony Induced by Ventricular Pacing in Ebstein’s Anomaly Undergoing Percutaneous Mitral Valve Repair
Heajung L. Nguyen, Marcella A. Calfon Press, Jamil A. Aboulhosn, Jeannette P. Lin, Peyman Benharash, Eric H. Yang
Intentional Fracture of Previously Placed Stents: Impact of Pre-stenting in a Piglet Model

András Bratincsák, MD, PhD¹, William Van Alstine, DVM, PhD, DACVP³, Lindsay Koren, BE², Kimberly Stoughton, CVT³, José Negrón-Garcia, CVT⁴, Anthony Ragheb, PhD², Hannah El-Sabrout, HSDG⁴, John W. Moore, MD, MPH⁵, Howaida el-Said, MD, PhD⁵∗

¹ Kapi’olani Medical Center for Women and Children, University of Hawaii, Honolulu, Hawaii, United States
² Cook Medical, Bloomington, Indiana, United States
³ Cook Research Incorporated, West Lafayette, Indiana, United States
⁴ Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, United States
⁵ Rady Children’s Hospital, University of California San Diego, San Diego, California, United States

Abstract

Background: Intentional stent fracture in vivo induces medial dissection/vessel injury. Spontaneous stent fracture in humans can lead to stent collapse, hemodynamic compromise, and embolization of stent fragments, which could be prevented by pre-stenting. Objectives: To evaluate the short-term and mid-term effects of pre-stenting prior to intentional stent fracture on vessel size and integrity in a piglet model. Methods: Five months after 14 low-profile stents (Cook Formula 418 stents) were implanted in the aorta of four piglets, they were intentionally fractured using ultra-high-pressure balloons with (pre-stent group) or without (single stent group) with another stent placed inside. Results: Compared with the single stent group, the pre-stent group showed a significantly larger vessel lumen area (109 mm² (89–141) vs. 57 mm² (47–73), P = 0.019), less mid-term luminal diameter loss (44% (26–59) vs. 75% (62–85), P = 0.007), lack of strut protrusion, and improved endothelialization (100% (89–100) vs. 73% (56–96), P = 0.022). Vessel wall injury was similar between groups at the time of stent fracture; however, the injury score was significantly improved at mid-term in the pre-stent group compared with the single stent group (P = 0.046). No damage to the external part of the blood vessels or the surrounding soft tissue was noted in either group.

Conclusion: Pre-stenting before intentional stent fracture may provide advantages including larger vessel diameter, maintained vessel patency, more complete endothelialization, and lack of strut protrusion.

Key Words

Stent Fracture • Coarctation • Intentional stent fracture

Introduction

Stent implantation in younger patients is facilitated by the availability of low-profile stents that are deliverable through small delivery sheaths, although these smaller stents cannot be dilated to match an adult vessel size [1-3]. Several in vitro studies demonstrate that small- and medium-size stents can be fractured using ultra-high-pressure balloons [4, 5]. Recently, an in vivo model of stent fracture (i.e., “unzipping”) confirmed the feasibility of intentional fracture of several different stents in pigs; however, the report did not mention vessel patency after fracture and admitted to significant vessel injury secondary to intentional fracture, with Cook Formula stents associated with a slightly lower vessel injury score than other stents.

* Corresponding Author:
Howaida el-Said, MD, PhD
Rady Children’s Hospital
University of California San Diego
3020 Children’s Way, San Diego, CA 92123, USA
Tel. +1 914 409 3091; Fax: +1 858 966 7903; E-Mail: hgelsaid@yahoo.com
and the EV3 stent having the lowest score [6].

Five intentional longitudinal stent fractures were reported in humans using high-pressure balloons without immediate adverse events [7]. In situ spontaneous stent fracture in humans is not uncommon and has been reported in up to 21% patients, with resultant obstruction in 80% (of which 39% were considered severe). Some fractures can cause stent collapse, hemodynamic compromise, and embolization of stent fragments, requiring additional intervention in 75% of cases [8, 9]. In a large report of the spontaneous fracture of 3,650 stents, there was a 42% incidence of in-stent restenosis and 4.6% incidence of thrombosis [10]. Furthermore, in a study demonstrating the feasibility of intentional stent fracture in humans, there was a significant incidence of complications (15%), including embolization of stent fragments, unstable stent fracture, vascular tear, non-obstructive intimal tear, and aorto-pulmonary window. All complications except embolization were prevented by pre-stenting [11].

The purpose of the present study was to evaluate the impact of pre-stenting prior to intentional stent fracture in a piglet model.

Methods

Study Design

Experiments were performed using four 6-9-week-old piglets (7–11 kg), in which the aorta at various levels measured 5.7–10 mm. A total of 14 Cook Formula 418 stents (all 2 mm length) were placed in the four piglets (three stents in two piglets and four stents in two piglets) at a diameter 1–3 mm larger than the vessel size to prevent stent migration. The pigs were allowed to grow for 5 months, during which time the aorta above and below the stent grew to 10.9–22 mm, with the area where the stent was placed being locked at its original size.

In two pigs (one with four stents and the other with three stents), the previously stented area was fractured using ultra-high-pressure Atlas balloons (Bard Peripheral Vascular, Temple, AZ, USA) without pre-stenting (single stent group). The Atlas balloons were over-sized for the region of the stent but matched the size of the adjacent vessel diameter.

In the other two pigs (one with four stents and the other with three stents), the previously stented area was pre-stented prior to stent fracture using Cordis Palmaz Genesis 1910 B peripheral stents (Cordis, Hialeah, FL, USA; pre-stent group). The Genesis stents were mounted on Cordis Powerflex (Cordis, Hialeah, FL, USA) or NuMED BIB (NuMed Inc., Hopkinton, NY, USA) balloon catheters. The Genesis stents were selected for the second set of stents because they are commonly used in the pediatric population and can be ultimately dilated to reach adult vessel size. Balloon catheters were inflated to their respective recommended maximum pressure to place the Genesis stents inside the smaller Cook Formula stents. High-pressure Atlas balloons were then used to dilate the secondarily placed Genesis stents with simultaneous intentional fracture of the smaller Cook Formula stents.

Two pigs (short-term group; one each from the single stent and pre-stent groups, total of seven stents) were euthanized immediately and the tissue

<table>
<thead>
<tr>
<th>Table 1. Group demographics.</th>
<th>Re-stent group</th>
<th>Single stent group</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=7</td>
<td>n=7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piglet weight (kg)</td>
<td>6.6</td>
<td>8.1</td>
<td>0.0342</td>
</tr>
<tr>
<td>Original Stent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Formula 418</td>
<td>Formula 418</td>
<td></td>
</tr>
<tr>
<td>Stent Size (mm)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 n=3</td>
<td>n=1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5,6 n=4</td>
<td>n=4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,8 n=0</td>
<td>n=2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fracture diameter (mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 n=3</td>
<td>n=1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 n=4</td>
<td>n=4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 n=0</td>
<td>n=2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fracture atm (mean)</td>
<td>14.7 ±4.9</td>
<td>18.4 ±4.8 **</td>
<td>0.1766</td>
</tr>
</tbody>
</table>

* All Formula 418 stents were 12mm in length
** Higher atm for the single stent group can be explained by the fact that the stents were thinner and harder to visualize in the older pig, so more atmospheres were used to insure that they were broken.
examined. The other two pigs (mid-term group; one each from the single stent and pre-stent groups, total of seven stents) were allowed to grow for 2 another months (Table 1, Figure 1). We chose 2 months because previous studies show complete endothelialization of injured vessels in rabbits and pigs at 28 days [12-14].

Animal Experiments

Animal experiments were approved by the Institutional Animal Care and Use Committee at Purdue University. Yorkshire Cross piglets were used to allow rapid growth over a short period of time. Survival surgeries (i.e., catheterizations) were carried out at Purdue University facilities in collaboration with Cook Research Incorporated and Cook Medical. Pigs underwent a quarantine period and were examined by a veterinarian prior to catheterization procedures and weekly throughout the duration of the study.

Pigs were started on aspirin and clopidogrel 3 days prior to catheterization. Pigs were pre-medicated with tiletamine and zolazepam, and anesthesia was induced by a mixture of ketamine and xylazine. Pigs were intubated, and anesthesia was maintained with isoflurane (1.25–1.75% in 1.5–2.5 L/min oxygen) via a standard rebreathing anesthetic circuit for the remainder of the procedures. Intravascular access was obtained by carotid or femoral cut-down or percutaneous puncture using a modified Seldinger technique. Intramuscular antibiotic (ceftiofur crystalline) was given prior to stent implantation. After the procedure, anesthesia was discontinued, and pigs recovered on a raised floor pen. Pigs were medicated as necessary (meloxicam, butorphanol, or flunixin) to assure uncomplicated recovery and monitored every 15–30 min until they were alert and responsive. After catheterization, pigs were maintained on aspirin and clopidogrel throughout the growth phase to prevent stent thrombosis. Clinically, pigs were healthy and fully ambulatory throughout the study. Pig weight ranged from 9–11 kg at initial stent implantation to 98–119 kg at the time of euthanasia.

For euthanasia, pigs were anesthetized as above. Sodium nitroprusside was administered to reduce post-mortem vasospasm, and isoflurane level was increased to 5%. After approximately 5 min, pigs were euthanized by intravenous administration of potassium chloride. Death was verified by a lack of vital signs. After angiography and euthanasia, the abdominal cavity was opened and the aorta exposed.

After gross examination of the aorta, the left ventricle and venous systems were cannulated. The aorta was perfusion-flushed with physiological saline until the effluent began to run clear. The stented area was then perfusion-fixed with Prefer fixative for approximately 10 min prior to immersion fixation in 10% neutral buffered formalin.

After the aorta was removed, pigs were submitted for full postmortem evaluation. Detailed macroscopic examination was performed by a board-certified vet-
the original stent. Low-pressure balloons did not fully dilate and fracture the stents (Figure 2B), but ultra-high-pressure balloons achieved intentional stent fracture and re-dilation of previously implanted stents (Figure 2C). Stent dilation was performed in increments, and fracture occurred at the previously noted fracture diameter determined by bench testing [4]. In the single stent group, the stents were thinner and more difficult to visualize in the older pigs, so more atmospheres were used to ensure their breakage.

Radiographic, Angiographic, Gross Inspection, X-ray, Computed Tomographic, and Histopathologic Evaluation

Radiographic images and angiograms were obtained during all catheterization procedures. After euthanasia, necropsy was performed for gross inspection, histologic, and radiographic evaluation. The stented vessels were flushed with physiological saline for approximately 10 min followed by perfusion of Prefer fixative for 15 min prior to excision. Vessel diameter was measured using angiograms, and vessel luminal area was assessed using histologic samples.

Radiography. High-resolution radiography and micro computed tomography (CT) were performed on all stents after explant. High-resolution radiography was performed using a Kubtec Xpert 80-L w/
Each strut within a cross-section, vessel wall injury was scored as follows: 0 for no change in internal elastic lamina, 1 for rupture of internal elastic lamina, 2 for injury to tunica media, or 3 for injury to external elastic lamina and extending into or through the tunica adventitia. Each vessel had two cross-sections. The score for each cross-section was the sum of all injury scores for that cross-section divided by the number of total struts in the cross-section. The injury score for each group is the injury score for all cross-sections for the group divided by the total number of cross-sections for the group. Endothelialization was determined by the histological presence of endothelium over each strut within a cross-section. The degree of endothelialization is the percentage of endothelialized struts in the vessel.

Statistical Analysis

Descriptive statistical analysis was used to compare variables between pre-stent and single stent groups; data are expressed as median and interquartile range. Mann-Whitney tests were used to compare vessel lumen area, balloon size, degree of endothelialization,
and vessel wall injury scores between groups; data are expressed as median and interquartile range. Mann-Whitney and Wilcoxon rank tests were used to compare the loss of luminal diameter from implantation to mid-term between groups; data are expressed as median change (%) and interquartile range. Vessel wall injury scores were compared between groups using unpaired t-tests and Mann-Whitney post-hoc tests for nonparametric data. Analyses were performed using Excel (Microsoft, Redmond, WA), GraphPad Prism (GraphPad, La Jolla, CA), and Instat 3 (GraphPad, San Diego, CA) software. P-values < 0.05 were considered statistically significant.

Results

Vessel Patency and Luminal Diameter after Intentional Stent Fracture

After intentional stent fracture, we found significant vessel diameter loss in the single stent group.
The angiographic vessel diameter of stented vessel segments was similar to that of adjacent naïve vessel segments in the pre-stent group, whereas the single stent group demonstrated significantly larger luminal diameter loss. Two months after angioplasty, compared with the pre-stent group (Table 2). The degree of vessel diameter loss was subtle on traditional angiography (Figure 3A), but high-resolution radiography and rotational CT showed compromised vessel patency (Figure 3B and 3C) and revealed the mechanisms of vessel diameter loss in the single stent group as including stent in-folding, buckling, and collapse. This stent in-folding, buckling, and collapse was not present in the pre-stent group (Figure 4).

Consistent with the maintained vessel diameter as shown by angiography, radiography, and CT, the luminal area of the stented vessel segments measured by histomorphometry was significantly larger in the pre-stent group (109 mm² (89–141)) than in the single stent group (57 mm² (47–73), P = 0.019; Figure 5A). The angiographic vessel diameter of stented vessel segments was similar to that of adjacent naïve vessel segments in the pre-stent group, whereas the single stent group demonstrated significantly larger luminal diameter loss. Two months after angioplasty, compared with the balloon diameter used for dilation (we only compared segments after dilation with 16

Figure 5. Comparison of vessel lumen diameter change, endothelialization, and vessel wall injury after intentional stent fracture between pre-stent and single stent groups. **Panel A.** Histomorphometric comparison of stented vessel lumen area 2 months after intentional stent fracture. The area of the stented vessel segments was significantly larger in the pre-stent group than in the single stent group. **Panel B.** The pre-stent group maintained larger angiographic lumen diameter, whereas the single stent group exhibited significant diameter loss due to stent in-folding and collapse 2 months after balloon angioplasty. **Panel C.** Pre-stenting allowed almost complete endothelialization 2 months after stent implantation, whereas endothelial coverage was significantly less in the single stent group due to luminal stent strut protrusion. **Panel D.** Comparison of vessel injury between pre-stent and single stent groups at short-term and mid-term evaluation. Vessel wall injury was similar at the time of stent fracture regardless of pre-stenting or unzipping without pre-stenting; however, injury score significantly improved 2 months after stent fracture in the pre-stent group but not in the single stent group. Data are shown as median, interquartile range, and range.
Our study demonstrates the feasibility of intentional stent fracture of previously implanted stents with simultaneous pre-stenting in an in vivo piglet model. Additionally, pre-stenting appears to provide appropriate vessel patency, prevents vessel diameter loss, improves endothelialization rate, and prevents intraluminal protrusion of stent struts. Moreover, pre-stenting appears to be safe, with no damage to surrounding soft tissue and no significant vessel wall injury.

Endothelialization and Exposed Stent Struts

There were no stent struts protruding into the lumen of vessels in the pre-stent group (Figures 4 and 6), whereas numerous naked (i.e., non-endothelialized) stent struts were noted in the lumen of vessels in the single stent group (Figures 6G, 6H, and 6I). Accordingly, the degree of endothelialization was markedly higher in the pre-stent group (100% (89–100)) than in the single stent group (73% (56–96), P = 0.022; Table 2, Figure 5C).

Vessel Wall Injury

Similar degrees of vessel wall injury were noted in the pre-stent group and single stent group at the time of intentional fracture (i.e., short-term) with scores of 0.51 and 0.59, respectively. However, at mid-term evaluation, the injury score in the pre-stent group was significantly improved (decrease from 0.51 to 0.31, P = 0.046), whereas the injury score in the single stent group was unchanged (0.5, P > 0.05; Figure 5D), although the difference between groups did not reach statistical significance (P = 0.067; Table 2, Figure 5D).

Lack of Injury to Adjacent Soft Tissue

Macroscopic examination of stented areas revealed a lack of external stent strut protrusion or transmural vessel injury in both the pre-stent and single stent groups (Figure 6). In both groups, the broken stent struts remained embedded in the vessel wall or exhibited inward protrusion due to the in-folding collapse of fractured stents (Figure 3, 4, and 6). There was no damage to the external part of the blood vessels or surrounding soft tissue (Figure 6C).

Microscopic examination of five muscle groups in the hind limb, lymph nodes regional to the hind limbs and descending aorta, and multiple sections of brain, lung, each kidney, liver, heart, spleen, and spinal cord showed no important lesions and no evidence of thromboembolism or stent fragment displacement in any downstream (i.e., hind limb muscles/regional lymph nodes) or systemic tissues.

Discussion

Our study demonstrates the feasibility of intentional stent fracture of previously implanted stents with simultaneous pre-stenting in an in vivo piglet model. Additionally, pre-stenting appears to provide appropriate vessel patency, prevents vessel diameter loss, improves endothelialization rate, and prevents intraluminal protrusion of stent struts. Moreover, pre-stenting appears to be safe, with no damage to surrounding soft tissue and no significant vessel wall injury.

Stented vessel diameter and cross-sectional area were significantly improved by pre-stenting during simultaneous intentional stent fracture of previously placed stents compared with no pre-stenting. Intentional stent fracture causes a loss of stent integrity with a dramatic decline in radial stiffness and strength [4]. This decrease in radial stiffness and strength allows the blood vessel to recoil more than with an intact stent. Moreover, an irregular stent fracture pattern may result in an irregular vessel wall shape. Both recoil and irregular shapes of blood vessels lead to compromised vessel lumen with decreased vessel diameter and cross-sectional area, consistent with our findings. As stent implantation is aimed at recovering areas of stenoses, it is of utmost importance that the stented vessel maintains appropriate patency. Simple stent fracture (i.e., unzipping) without the additional benefit of pre-stenting may not stabilize the vessel wall and may decrease vessel patency, thereby leading to restenosis and a significant pressure gradient.

Endothelial coverage allows appropriate blood vessel function and prevents thrombus formation at the vessel wall [16]. Fractured and not pre-stented fragments may protrude into the vessel lumen and prolong or even prevent complete endothelialization. Pre-stenting at the time of intentional fracture may prevent stent strut protrusion and thereby improve the chance of complete endothelialization with more rapid re-institution of physiologic vascular endothelial function.

Our observed vessel wall injury during pre-stenting was comparable to that after balloon angioplasty or single stent placement [6]. Incidental fracture of stents may cause severe vessel wall injury [17], and even intentional stent fracture in vivo (i.e., unzipping) may cause vessel wall damage due to an irregular
Figure 6. Vessel wall injury and endothelialization of blood vessels after pre-stenting compared with single stent implantation. Panels A, B, and C. Intentional stent fracture with pre-stenting caused only minimal vessel wall injury and did not result in transmural vessel injury or damage of surrounding soft tissue. Panel A. Localized dissection of the tunica media in a stented vessel immediately after stent implantation and lack of external protrusion of stent struts. Panel B. High-magnification image showing the extent of dissection and intramural hemorrhage immediately after stent placement. Panel C. Macroscopic picture showing no damage to the external surface of blood vessels despite the size discrepancy of stented segments. Panels D, E, and F. Pre-stenting allowed appropriate endothelialization and minimal vessel wall injury 2 months after stent placement. Panel D. Mid-term (i.e., 2 month) follow-up showed mild intimal and medial thickening in response to stent placement, no intraluminal protrusion of stent struts, and no dissection or pathologic vessel dilation. Panels E and F. High-magnification images showing almost complete endothelial coverage over stent struts 2 months after implantation. Panel G. Single stent implantation with intentional stent fracture (i.e., unzipping without pre-stenting) led to incomplete endothelialization due to intraluminal stent strut protrusion and decreased vessel lumen cross-sectional area. Panels H and I. High-magnification images showing stent strut protrusion without endothelial coverage. Grey bars in A, D, and G = 3 mm; black bars in B, E, and H = 0.5 mm and in F and I = 0.2 mm. Black arrowheads indicate endothelial coverage over stent struts, and black arrows point to bare metal struts protruding into the vessel lumen.
in our experience, pre-stenting at the time of intentional stent fracture caused no further injury to the vessel wall, and injury scores improved at mid-term evaluation.

Macroscopic examination of stented vessels provided no evidence of damage to the surrounding tissue or transmural vessel injury. This is important because in vitro testing of stents with intentional fracture produces an irregular fracture pattern, with many stent struts protruding tangentially [13]. These externally protruding stent fragments can penetrate through blood vessels and damage adjacent soft tissue, including arteriovenous malformations [11, 18, 19]. However, pre-stenting allows realignment of the struts of intentionally broken stents, which remain embedded in the vessel wall, in a more ideal circular fashion.

Our study has some limitations. The experiments were performed in a growing piglet model that has different growth velocity characteristics than humans. Nevertheless, this model has been employed in similar studies to mimic the growth of infants and small children [6]. Although the number of stents and animals were small, they were adequate to achieve statistical significance in the areas demonstrated. We assessed only one type of stent in this in vivo study, which was selected based on its superior characteristics in our in vitro bench testing [4]. Pressure gradients across the stents were not measured in all animals because we found only very small (2–5 mm Hg) gradients across stented segments in the few we measured. Moreover, our model was not intended to create significant coarctation with pressure gradients; rather, it was designed to evaluate the feasibility and characteristics of the pre-stenting technique.

In conclusion, our study shows that pre-stenting at the time of intentional pre-existing stent fracture provides advantages over simple stent fracture. Pre-stented vessels had larger vessel diameters, maintained better vessel patency, had more complete endothelialization, and showed no protrusion of stent struts into vessel lumens. These findings should be considered in small children requiring vessel angioplasty or stenting.

Acknowledgements

We deeply appreciate and thank the Foroni Family of Madrid, Spain for their generous contributions supporting this work and related stent studies. We thank William Schoenlein, Melissa Bible, Tracy Moller, Gena Brock, and Richard Sieber for their contributions and assistance with animal experiments. We also thank Omar El-Sabrout for his input in the study and review of the manuscript.

Conflict of Interest

The authors have no conflict of interest relevant to this publication.

References

Elective Stent Implant in the Obstructed Vertical Vein of Supracardiac Total Anomalous Pulmonary Venous Connection Prior to Operative Repair

Elisa Rhee, MBBCh, BAO1, John P. Breinholt, MD1*

1 Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas, United States

Abstract

Background: Total anomalous pulmonary venous connection (TAPVC) comprises 2% of congenital heart disease cases. Obstructed TAPVC typically presents with respiratory distress secondary to pulmonary congestion. We report a case of an infant patient who was electively referred to catheterization for stent placement to relieve vertical vein (VV) stenosis. Our objective was to prevent the emergent need for surgical intervention while allowing additional growth before surgery.

Case Presentation: A 7-day-old, late pre-term, small for gestational age male infant was transferred from an outside institution. He was initially placed on nasal cannula due to oxygen saturation around 80% but progressed to continuous positive airway pressure and had a chest X-ray suggestive of pulmonary edema. Echocardiography revealed supracardiac TAPVC, a small apical muscular ventricular septal defect, and a moderate secundum atrial septal defect. On admission, the patient was clinically stable with a baseline oxygen saturation of 72% on 40% oxygen. Echocardiography confirmed supracardiac TAPVC and also showed an obstruction with a mean gradient of 22 mmHg in the VV. The desire to optimize the patient’s clinical stability led to the decision to undergo cardiac catheterization for stent implantation in the VV. Immediately following the procedure, the patient’s hemodynamics improved, with a pressure gradient between the pulmonary venous confluence and the left innominate vein of 4 mmHg.

Conclusions: Over the last decade, surgical outcomes of TAPVC repair have improved with better control of pulmonary hypertension and preoperative clinical stabilization due to more aggressive medical management. This case presents an opportunity to consider an elective interventional strategy that palliates the disease to prevent an urgent need for definitive repair.

Key Words

TAPVC • Interventional • Obstructed • Vertical vein • Elective

Introduction

Total anomalous pulmonary venous connection (TAPVC) is a rare cardiac defect that comprises 2% of congenital heart disease cases [1]. TAPVC encompasses different anatomic subtypes in which pulmonary veins fail to connect directly to the left atrium and drain to the right atrium via an anomalous venous connection [2, 3]. Supracardiac TAPVC is the most common type, comprising about 45% of cases [2]. A left-sided vertical vein (VV) accounts for 70% of the connections between the pulmonary confluence and the right atrium, and stenosis occurs in approximately 40% of cases [3].

Obstructed TAPVC typically presents with respiratory distress secondary to pulmonary congestion,
cyanosis, and metabolic acidosis [4]. It is traditionally considered a surgical emergency. Emergent stenting of the VV is rarely reported but has been performed when a patient is considered a poor candidate for surgical repair [4-6]. Pulmonary venous obstruction is associated with poor prognosis and a high risk of operative mortality [7, 8].

Here, we report a case of an infant patient who was electively referred to catheterization for stent placement to relieve VV stenosis. Our objective was to prevent the emergent need for surgical intervention while allowing additional growth before surgery.

Case Presentation

A 7-day-old, former 36 6/7 week, 2.4 kg, small for gestational age male infant was transferred from an outside institution. At the time of delivery, he was noted to have poor respiratory effort and a heart rate below 100 beats per minute. Chest compressions were provided for less than 1 min, and his APGAR scores were 5 and 7 at 1 and 5 min, respectively. The patient was noted to have oxygen saturation of roughly 80%, requiring blow by oxygen. He was initially placed on nasal cannula, but over the next 7 days progressed to continuous positive airway pressure and had a chest X-ray suggestive of pulmonary edema. An echocardiogram at that time revealed supracardiac TAPVC, a small apical muscular ventricular septal defect with right-to-left shunt, and a moderate secundum atrial septal defect with right-to-left shunt.

On admission, the patient was stable with a baseline oxygen saturation of 72% on 40% oxygen. An echocardiogram was performed that confirmed supracardiac TAPVC but demonstrated an obstruction in the VV with a mean gradient of 22 mmHg. All pulmonary veins drained to a confluence behind the left atrium and communicated to the innominate vein via a VV.

The patient’s size and the desire to optimize his clinical stability led to the decision to undergo cardiac catheterization for stent implantation in the VV (Figure 1A). Femoral vein access was achieved, and a 4-F angled Glide catheter (Terumo, Somerset, NJ, USA) was advanced prograde into the VV. A 17 mmHg pressure gradient between the pulmonary venous confluence and the left innominate vein was recorded. A V-18 Control wire (Boston Scientific, Marlborough, MA) was advanced through the VV to the innominate vein. A 16 mm stent (Medtronic, Minneapolis, MN, USA) was advanced into the VV via the Glide catheter and deployed. A 14 mm stent was then advanced into the VV via the initial stent and deployed proximally within the initial stent (Figure 1B). The patient tolerated the procedure well, and there was no immediate post-procedure complication. The patient was monitored for 24 hours and discharged home on the fourth post-procedure day with a stable clinical status.

Figure 1. Panel A. Cardiac angiography prior to stent placement. The confluence narrowing is 3.6 mm with the superior aspect of the vertical vein measuring 5.5 mm. Panel B. Cardiac angiography after the two stents were implanted, with the second stent telescoped proximally within the initial stent.
Low birth weight is an independent risk factor in the operative management of obstructive TAPVC [5, 6, 9]. Patients who undergo emergent VV stent implantation prior to definitive surgery often present with respiratory distress and cyanosis secondary to pulmonary congestion [4]. In this case, the patient showed no evidence of pulmonary venous obstructive disease, the presentation of which leads to emergent surgery. The patient's respiratory support was more suggestive of pulmonary overcirculation due to the large left-to-right shunt produced by the anomalous pulmonary venous return. Our clinical strategy was to allow the patient to achieve additional somatic growth to mitigate the increased morbidity and mortality observed in low birth weight neonates with this disease.

Over the last decade, surgical outcomes of TAPVC repair have improved with better control of pulmonary hypertension and preoperative clinical stabilization due to more aggressive medical management [6, 9]. Our case presents an opportunity to consider an interventional strategy that palliates the disease to prevent an urgent need for definitive repair. Stent MA, USA) was advanced into the right lower pulmonary vein, and the Glide catheter was exchanged for a Palmaz Blue 6 × 16 mm stent (Cordis, Fremont, CA, USA) that was deployed in the VV. Due to a persistent residual gradient, a Palmaz Blue 6 × 12 mm stent was telescoped proximally within the prior stent to ensure resolution of the obstruction within the VV (Figure 1B). Repeat hemodynamics demonstrated a pressure gradient between the pulmonary venous confluence and the left innominate vein of 4 mmHg. Oxygen saturation improved to 95% on 50% oxygen, which was reduced to room air over 48 hours. Repeat chest X-ray showed improvement of the pulmonary edema (Figure 2A and 2B).

Over the following 3 weeks, pulmonary edema developed again despite medical management with diuretics. At 26 days of age, the patient had gained approximately 200 g and underwent TAPVC repair. He recovered well, was extubated, and weaned to room air by postoperative day 5. He was discharged on postoperative day 21 on once daily furosemide.

Discussion

Low birth weight is an independent risk factor in the operative management of obstructive TAPVC [5, 6, 9]. Patients who undergo emergent VV stent implantation prior to definitive surgery often present with respiratory distress and cyanosis secondary to pulmonary congestion [4]. In this case, the patient showed no evidence of pulmonary venous obstructive disease, the presentation of which leads to emergent surgery. The patient's respiratory support was more suggestive of pulmonary overcirculation due to the large left-to-right shunt produced by the anomalous pulmonary venous return. Our clinical strategy was to allow the patient to achieve additional somatic growth to mitigate the increased morbidity and mortality observed in low birth weight neonates with this disease.

Over the last decade, surgical outcomes of TAPVC repair have improved with better control of pulmonary hypertension and preoperative clinical stabilization due to more aggressive medical management [6, 9]. Our case presents an opportunity to consider an interventional strategy that palliates the disease to prevent an urgent need for definitive repair. Stent implantation to palliate the disease was performed in this case, and we report the results of this novel interventional approach.
implantation in the VV provides a bridge that allows further somatic growth and improved pulmonary mechanics from obstruction relief.

Supracardiac TAPVC is a rare congenital cardiac defect in which obstruction of the VV approaches 40% [3]. Elective stent implant in the VV as a palliative procedure may allow additional somatic growth to reduce mortality and morbidity at the time of surgery. Therefore, urgent surgery is avoided, with time allowing for planning and resolution of symptoms prior to definitive repair.

References

Cite this article as: Rhee E, Breinholt JP. Elective Stent Implant in the Obstructed Vertical Vein of Supracardiac Total Anomalous Pulmonary Venous Connection Prior to Operative Repair. Structural Heart Disease. 2017;3(6):176-179. DOI: https://doi.org/10.12945/j.shd.2017.025.17

Conflict of Interest

The authors have no conflict of interest relevant to this publication.
Successful First-in-Man Concomitant Transapical Transcatheter Aortic and Mitral Valve Replacements for Severe Native Aortic and Mitral Valve Stenosis Using the Edwards Certitude Delivery System

Anwar Tandar, MD¹, Jason P. Glotzbach, MD², Frederick G.P. Welt, MD¹, Vikas Sharma, MD², Kelsee Browning, AGNP-C¹, Craig H. Selzman, MD³, Abdulfattah Saidi, MD¹*, David A. Bull, MD²

¹Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
²Division of Cardiothoracic Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States

Abstract

Transcatheter aortic valve replacement (TAVR) has become the treatment of choice for high or intermediate risk patients with symptomatic severe aortic stenosis. Transcatheter mitral valve replacement (TMVR) for native mitral stenosis is still under investigation in clinical trials. Results from a global registry, however, show that TMVR in patients with severe mitral annulus calcification is feasible but associated with significant adverse events. Simultaneous TAVR and TMVR on native valves has only been reported twice. Here, we report the first case of simultaneous TAVR and TMVR for native aortic and mitral stenosis using the Edwards Certitude transapical delivery system.

Key Words

Native aortic stenosis • Native mitral stenosis • Simultaneous • Double valve • Transcatheter valve replacement • Transapical approach

Case Presentation

The patient was a 71-year-old man with symptomatic severe aortic stenosis (mean gradient, 53 mmHg; aortic valve area, 0.7 cm²; maximum aortic valve velocity, 4.1 m/s; Figure 2 and Figure 3) and heavily calcified severe mitral stenosis (mean gradient, 12 mmHg; mitral valve area, 1 cm²; Figure 4 and Figure 5).
with a Wilkins score of 12 and mean pulmonary artery pressure of 43 mmHg. His left ventricular ejection fraction was 44%, and he showed Class III New York Heart Association symptoms. His medical history also included coronary disease status post-coronary artery bypass graft, peripheral artery disease status post-femoral-femoral artery bypass, porcelain aorta, severe chronic obstructive pulmonary disease, type II diabetes mellitus, and sick sinus syndrome.

After evaluation by a multidisciplinary heart team, the patient was deemed to be a prohibitively high-risk candidate for surgical aortic valve replacement due to a Society of Thoracic Surgeons mortality risk score greater than 10% and the presence of a porcelain aorta on imaging studies. Balloon mitral valvuloplasty was contraindicated due to a high Wilkins score. Therefore, we made the decision to proceed with simultaneous TAVR and TMVR.

Valve analysis was performed using helical computed axial tomography (CT) scanning with 3mensio Structural Heart (3mensio Medical Imaging BV, Balthoven, Netherlands) and OsiriX three-dimensional...
The CT scan also showed a porcelain aorta.

The procedure took place under general anesthesia in a hybrid operating room. A Certitude delivery system was inserted into the apex through a limited left anterior thoracotomy utilizing 2-0 plegeted braided polyester sutures as mattress pursestrings (Ethicon, Somerville, NJ, USA). A 0.035” guidewire was advanced into the ascending aorta and then exchanged with an Extra Stiff Amplatz wire. The 26-mm SAPIEN 3 valve was advanced and deployed during rapid pacing (Figure 6). Transesophageal echocardiography (TEE) showed that the prosthesis was in an

reconstruction software (Pixmeo SARL, Bernex, Switzerland). This analysis demonstrated an aortic annulus area of 480 mm², which was suitable for a 26-mm Edwards SAPIEN 3 (Edwards Lifesciences, Irvine, CA, USA) valve. The mitral valve area was 286 mm², which was suitable for a 29-mm Edwards SAPIEN 3 valve.

Figure 4. Three-dimensional TEE showing a heavily calcified mitral valve with severe stenosis.

Figure 5. TEE four chamber view with color doppler showing severe mitral stenosis.

Figure 6. Fluoroscopy clip showing deployment of the SAPIEN 3 valve in the aortic position.
optimal position without paravalvular leak (Figure 7). The mean gradient across the prosthetic valve was 5.7 mmHg.

Subsequently, the TAVR delivery system was removed, and the Certitude sheath was kept in place. A 0.035” straight-tip wire was used to cross the mitral valve and then exchanged with an Inoue wire. To achieve maximum expansion, 4 mL was added to the 29-mm SAPIEN 3 balloon. A coplanar fluoroscopic view was obtained using the mitral annular calcification as a landmark. The valve was deployed during rapid pacing using fluoroscopic and live TEE guidance (Figure 8). TEE showed that the prosthesis was in an optimal position (Figure 9), with trivial paravalvular leak and a mean gradient of 3.5 mmHg. The left ventricle outflow tract gradient was 12 mmHg. Postdilation with an additional 2 mL (total of 6 mL) was performed to flair the atrial side of the Sapien valve and minimize the risk of valve migration. Prior to discharge (i.e., 5 days after the procedure), trans-thoracic echocardiography showed normal function of both prostheses without paravalvular leaks. At 2-month follow-up, the patient continued to do well. Follow-up transthoracic echocardiography showed no changes compared with prior study.

Discussion

TAVR has been found to be non-inferior to surgical aortic valve replacement in patients with severe aortic stenosis deemed to be at high or intermediate surgical risk [1, 2]. These patients often have concomitant mitral stenosis with a high Wilkins score, barring them from mitral balloon valvuloplasty. The option of performing TMVR of native mitral stenosis at the same time as TAVR, although not previously studied, has been reported in two cases [5, 6]. To the best of our knowledge, this is the first simultaneous TAVR and TMVR of native aortic and mitral valves stenoses utilizing a single transapical access with the Edwards Certitude delivery system.

Because is a complex and novel approach, selecting the appropriate candidate is key for success of this procedure. It is of utmost importance to obtain accurate measurements of both aortic and mitral annuli and to select the appropriate prosthesis size and minimize the risk of interference given the anatomi-
Edwards SAPIEN S3 was chosen as it is the only transcatheter valve available that can be reverse-mounted to accommodate the transapical approach. Additionally, the SAPIEN 3 valve provides the option of balloon hyperexpansion if needed to minimize the risk of migration and paravalvular leak, especially in the mitral position. The sequence of valve implantation is controversial. Salaun et al. [7] speculated that starting with mitral valve implantation may result in obstruction of the aortic prosthesis. Bauernschmitt et al. [5] chose to implant the mitral valve first due to the anatomical proximity and concern for compression of the smaller aortic valve while implanting the larger mitral prosthesis. In Elkharbotly’s case [6], the aortic valve was placed first. In our case, the aortic valve was implanted first due to the critical nature of the aortic stenosis and in case of unexpected complications occurring during mitral valve intervention.

It is difficult to estimate the risk of mitral prosthesis migration. In the Bauernschmitt case [5], valve migration was not noted before the patient died from malignancy 9 months after implantation. In the Elkharbotly case [6], the reported 6-month follow-up was free of valve migration. Bapat et al. [8], in a valve-in-valve case, reported the migration of a SAPIEN prosthesis from the mitral position. In our case, we decided to hyperexpand the balloon in the mitral position to maximize valve fixation and minimize the risk of migration. Hyperexpanding the mitral prosthesis may theoretically cause compression of the aortic valve or left ventricular outflow tract obstruction. Fortunately, the postdeployment left ventricular outflow tract gradient was only 12 mmHg.

In conclusion, simultaneous TAVR and TMVR for native aortic and mitral valve stenosis may be safe in highly selected inoperable patients. The long-term safety and outcome of simultaneous TAVR and TMVR are not known, and more investigation is needed to validate this approach.

Conflict of Interest

The authors have no conflict of interest relevant to this publication.

References

Supplemental Media

Video 1. Aortic valve pre-transcatheter aortic valve replacement. View supplemental video at https://doi.org/10.12945/j.jshd.2017.026.17.vid.01.

Video 3. Mitral stenosis pre-transcatheter mitral valve replacement. View supplemental video at https://doi.org/10.12945/j.jshd.2017.026.17.vid.03.

Video 5. Transapical transcatheter mitral valve replacement. View supplemental video at https://doi.org/10.12945/j.shd.2017.026.17.vid.05.

Video 6. Transapical transcatheter aortic valve replacement. View supplemental video at https://doi.org/10.12945/j.shd.2017.026.17.vid.06.
Improvement in Pulmonary Function After Closure of Atrial Septal Defect in a Patient With Cystic Fibrosis

Abdulfattah Saidi, MD1*, Holly Carveth, MD2, Anwar Tandar, MD1

1 Division of Cardiovascular Medicine, University of Utah Hospital, Salt Lake City, Utah, United States
2 Division of Pulmonary Medicine, University of Utah Hospital, Salt Lake City, Utah, United States

Abstract
Atrial septal defect (ASD) is a major cause of left-to-right intracardiac shunting. If persisting into adulthood, an ASD can lead to a larger shunt, which may eventually cause pulmonary hypertension and right ventricular failure. Large intracardiac shunts cannot be tolerated in patients with underlying lung disease such as cystic fibrosis. Although the association between an intracardiac shunt and cystic fibrosis has been reported in the literature, the impact of ASD closure on the clinical course of patients with cystic fibrosis has not been studied. Here, we report a case of ASD closure in a patient with cystic fibrosis with hypoxemia out of proportion to his lung disease. Closure of the ASD shunt resulted in significant improvement of his symptoms and pulmonary function testing.

Key Words
Atrial septal defect • Septal closure device • Cystic fibrosis

Introduction
Secundum atrial septal defect (ASD) is an isolated defect in the fossa ovalis between the atria. Although many ASDs close spontaneously during the first year after birth [1], the defect persists in some cases, causing a left-to-right shunt [2]. Left-to-right shunting, when significant, can cause dyspnea on exertion, which may not be well tolerated in patients with an underlying pulmonary condition such as cystic fibrosis. It is unknown whether ASD closure could lead to symptomatic improvement in these patients. Here, we report a case of ASD closure resulting in improved pulmonary function testing in a patient with cystic fibrosis with a bidirectional shunt and worsening functional capacity.

Case Presentation
Our patient was a 36-year-old man with cystic fibrosis diagnosed at birth with a dF508/dF508 genotype. His symptoms could be characterized as moderate airway disease complicated by chronic airway infections, pancreatic insufficiency, diabetes, and malnutrition. Progression of his clinical condition caused dyspnea with minimal exertion. He was referred to our cardiology service to be evaluated for hypoxemia out of proportion to his chronic pulmonary disease. Pulmonary function testing showed a forced expiratory volume in 1 s (FEV1) of 1.71 (43% predicted). Transesophageal echocardiography (TEE) showed a small ASD with a bidirectional shunt seen at rest (Figure 1). Right heart catheterization showed a pulmonary artery pressure of 26/7/16 mmHg and pulmonary vascular resistance of 1.7 Wood units. A decision was made to proceed with ASD closure, which
was performed under the guidance of intra-cardiac echocardiography and fluoroscopy. A balloon sizing the defect was used, and the patient underwent ASD closure with a 25-mm Occluder Septal Helex. The indication for this closure was the presence of bidirectional flow that would ultimately lead to irreversible pulmonary hypertension. At the end of the procedure, an agitated saline study was performed, which revealed minimal residual shunt. Echocardiography performed the next day showed very minimal flow across the device as demonstrated by color Doppler. The patient was discharged to home on 81 mg aspirin and 75 mg clopidogrel daily for 3 months. He initially demonstrated symptomatic improvement with less oxygen requirement at rest. However, 3 months later, his symptoms of fatigue and dyspnea on exertion returned, and follow-up echocardiography demonstrated a large right-to-left intra-cardiac shunt at rest as demonstrated by an agitated saline study (Figure 2). His pulmonary function testing during this time showed an FEV1 of 1.78 (47% predicted). The patient was monitored for 1 year, during which his functional capacity and cystic fibrosis symptoms remained stable. He subsequently suffered from a neurological event suggestive of a transient ischemic attack of an embolic nature, after which he was considered for residual shunt closure. TEE revealed a deformity of the Helex device causing a bidirectional shunt via the inferior rim of the device. With further questioning, the patient admitted to using a high-frequency chest wall oscillation device a few days after his ASD closure as part of his routine treatment for cystic fibrosis.

The patient underwent closure of the residual shunt using a 30-mm Cardioform device. The second device was advanced across the defect and positioned to sandwich both sides of the previously placed Helex Occluder (Figure 3).
residual shunt was confirmed with several negative agitated saline injections. He was advised to not use the high-frequency chest wall oscillation device for at least 12 months. At 6-month follow-up, the patient showed significant improvement in his functional capacity, with pulmonary function testing demonstrating a spike increase in FEV1 to 3.4 (89% predicted; Table 1).

Discussion

ASD is one of the most common adult congenital heart defects [3, 4]. It is caused by underdevelopment of the secundum septum or over-reabsorption of the primum septum. In most cases, ASDs close spontaneously during infancy [4, 5]; however, if persistent, their clinical impact is related to their location, size, and association with other defects [5, 6]. Small ASDs usually cause a left-to-right shunt without significant structural consequences in the right-sided heart chambers. However, larger ASDs, if not corrected in
that closure of the PFO may have had a significant impact on lung function. The indication for the first ASD closure in our case was the presence of bidirectional flow, for which we aimed to prevent the development of irreversible pulmonary hypertension that would preclude ASD closure. The first closure significantly improved pulmonary function testing before the device migrated and led to a residual shunt with worsening symptoms and test results. We assume that the use of a high-frequency chest wall oscillation device dislodged the initial occlude, resulting in larger residual shunt. The indication for the second closure was a neurological event caused by a paradoxical embolism. There was significant improvement in pulmonary function testing after the second ASD closure, which was not associated with a residual shunt immediately after the procedure.

In conclusion, percutaneous closure of ASD in patients with cystic fibrosis and hypoxemia out of proportion to their lung disease may improve pulmonary function testing and hypoxemia, although further studies are warranted to confirm this possibility.

Conflict of Interest

The authors have no conflict of interest relevant to this publication.

References

Table 1. Pulmonary function test of the patient over his clinical course.

<table>
<thead>
<tr>
<th></th>
<th>Before first ASD closure</th>
<th>After first ASD closure (with residual shunt)</th>
<th>After second ASD closure (no significant residual shunt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV1</td>
<td>1.71 (43% predicted)</td>
<td>1.78 (47% predicted)</td>
<td>3.4 (89% predicted)</td>
</tr>
<tr>
<td>FEV1/FVC</td>
<td>53 (65% predicted)</td>
<td>61 (76% predicted)</td>
<td>76 (95% predicted)</td>
</tr>
</tbody>
</table>
Abstract
A 67-year-old male with Ebstein's anomaly and a dual-chamber pacemaker due to sick sinus syndrome was admitted to our hospital with cardiogenic shock. Echocardiography revealed severe functional mitral valve regurgitation with preserved ejection fraction. He was referred for percutaneous mitral valve repair (PMVR) for refractory shock in the setting of prohibitive surgical risk. Invasive hemodynamics obtained during PMVR revealed worsening mitral regurgitation due to septal dyssynchrony induced by the patient's permanent pacing. He underwent successful PMVR with subsequent clinical recovery. Dyssynchrony from right ventricular apical pacing may exacerbate mitral regurgitation and heart failure. PMVR with MitraClip may be a safe and effective therapeutic option in patients with refractory cardiogenic shock and severe mitral regurgitation.

Key Words
Mitral valve regurgitation • Dyssynchrony • Ventricular pacing • Percutaneous mitral valve repair • Ebstein's anomaly

Introduction
Percutaneous edge-to-edge mitral valve repair (PMVR) using the MitraClip (Abbott, Menlo Park, CA, USA) system is a novel method of reducing severe symptomatic degenerative mitral valve regurgitation (MR) in high-risk or inoperable patients. Although randomized trials for its use in functional MR and end-stage heart failure are currently underway, there are a few reported cases of its use as a rescue therapy in critically ill patients with refractory cardiogenic shock [1, 2]. Here, we present a case of cardiogenic shock in a patient with Ebstein's anomaly secondary to severe functional MR who underwent successful PMVR.

Case Presentation
A 67-year-old male with Ebstein's anomaly, history of bioprosthetic tricuspid valve replacement for tricuspid regurgitation, and dual-chamber pacemaker due to sick sinus syndrome presented to the emergency department with progressive dyspnea on exertion, abdominal distension, a 7-kg weight gain, and severe orthopnea. In the preceding 5 years, he had re-
quired multiple hospitalizations for dyspnea, weight gain, and abdominal distension despite escalating doses of diuretics.

On physical examination, he was severely dyspneic with an oxygen saturation of 95% on non-invasive bi-level positive pressure ventilation. His blood pressure was 96/67 mmHg with an atrioventricular paced heart rate of 80 beats per minute. His physical examination was notable for significant jugular venous distension, a grade II/VI holosystolic murmur heard loudest at the apex, bibasilar crackles, abdominal distension, and 1+ bilateral lower extremity edema. Serum brain natriuretic peptide was elevated at 364 pg/mL, and chest radiography showed enlargement of the cardiac silhouette, vascular congestion, pulmonary edema, and bilateral pleural effusions (Figure 1A).

Transthoracic and transesophageal echocardiography revealed severe MR, severe biatrial enlargement, and preserved left ventricular ejection fraction with left ventricular end-diastolic and end-systolic dimensions of 52 mm and 40 mm, respectively (Figure 2A and 2B, Video 1 and 2). Tenting of the mitral leaflets with poor coaptation of anterior and posterior leaflets was noted, consistent with functional MR. The bioprosthetic tricuspid valve appeared to function normally. Within 24 h of admission, he quickly progressed to cardiogenic shock requiring dobutamine and dopamine, and progressive anuric renal failure requiring continuous renal replacement therapy. He was evaluated for PMVR with via MitraClip given prohibitive surgical risk with 30-day Society of Thoracic Surgeons predictive operative mortality risk scores of 43% and 36% for mitral valve replacement and repair, respectively.

Table 1. Invasive hemodynamics immediately before and after percutaneous mitral valve repair. Note all hemodynamics were measured on the same dosages of dopamine, dobutamine, and epinephrine.

<table>
<thead>
<tr>
<th></th>
<th>Pre-Mitral Valve Repair</th>
<th>Post-Mitral Valve Repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Right Atrial Pressure (mmHg)</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td>Pulmonary Artery Pressure (mmHg)</td>
<td>67/30</td>
<td>60/27</td>
</tr>
<tr>
<td>Pulmonary Capillary Wedge Pressure (mmHg)</td>
<td>27</td>
<td>18</td>
</tr>
<tr>
<td>Left Atrial Pressure, a/v waves (mmHg)</td>
<td>18/65</td>
<td>14/30</td>
</tr>
<tr>
<td>Cardiac Output (L/min; via thermol dilution)</td>
<td>6.1</td>
<td>7.1</td>
</tr>
<tr>
<td>Cardiac Index (L/min/m2; via thermol dilution)</td>
<td>3.2</td>
<td>3.8</td>
</tr>
</tbody>
</table>
Figure 2. Transesophageal echocardiography before and after percutaneous mitral valve repair. Panel A. Two-dimensional midesophageal 50° view of the mitral valve with color doppler (left panel) showing an approximate commissural view of the P3, A2, and P1 scallops. Severe MR is noted, with a broad base due to leaflet malcoaptation resulting in a functional etiology from atrial dilation. Panel B. Three-dimensional live visualization of the mitral valve from the view of the left atrium. Three-dimensional imaging allows Video 1. Two-dimensional transesophageal echocardiography of the mitral valve as seen in Figure 2A before percutaneous mitral valve repair. View supplemental video at https://doi.org/10.12945/j.jshd.2017.033.17.vid.01.

Video 2. Three-dimensional transesophageal echocardiography of the mitral valve as seen in Figure 2B before percutaneous mitral valve repair. View supplemental video at https://doi.org/10.12945/j.jshd.2017.033.17.vid.02.
Intraoperative pre-repair hemodynamics revealed two distinct left atrial and arterial waveforms depending on the patient’s cardiac rhythm, illustrating its electromechanical influence on MR (Figure 3). Whereas as the patient was predominantly atrophic ventricular (AV) paced, a drop in V waves and concurrent rise in aortic waveforms was observed when the patient had native AV conduction. In comparison, resumption of

Figure 3. Invasive cardiac hemodynamics measuring simultaneous aortic (purple) and left atrial (yellow) waveforms before mitral valve repair. When the patient was in a ventricular paced rhythm, increased left atrial pressures with a mean of 30 mmHg with prominent V waves of up to 75 mmHg were noted. Simultaneous central aortic pressures decreased with ventricular pacing (mean 58 mmHg). Native ventricular conduction was associated with decreased left atrial pressures (mean 20 mmHg) with smaller V waves and enhanced arterial pressures (mean 68 mmHg). Ao = aortic pressures; LA = left atrial pressure.

Figure 4. Intraprocedural fluoroscopy, anteroposterior view, during MitraClip procedure. Panel A. Fluoroscopy performed after transseptal puncture. Balloon dilation (circle) of the interatrial septum was performed to allow for passage of the MitraClip delivery catheter. Panel B. Fluoroscopy visualizing the placement of three MitraClips (arrows).
Postoperatively, the patient was rapidly weaned off vasopressor support with recovery of renal function (Figure 1B). He was discharged 10 days after the procedure, with plans for pacemaker upgrade to cardiac resynchronization therapy. One month post-procedure, he was doing well, with New York Heart Association class II symptoms and maintenance of a stable weight on an oral diuretic regimen with brain natriuretic peptide of 126 pg/mL. Follow-up echocardiography confirmed no significant changes, with stable mild residual MR.

Discussion

Cardiac pacing is an established and effective treatment for a variety of bradyarrhythmias. Although the
Clinical scenarios ranging from acute severe MR immediately following pacemaker implantation to slow progression of MR in the setting of chronic right ventricular apical pacing [4-6].

The mechanism of MR with RV pacing is derived from intraventricular dyssynchrony. Pacing from the right ventricular apex induces an iatrogenic form of left bundle branch block as depolarization spreads from the apex to the base, as demonstrated by the patient’s electrocardiograms before and after dual-chamber pacemaker placement, several studies report detrimental effects of electrical dyssynchrony from RV pacing, including exacerbation of valvular dysfunction and heart failure [3, 4].

In this case, invasive hemodynamics obtained during PMVR demonstrated worsening of functional MR from septal dyssynchrony induced by RV apical pacing. The association between MR and right ventricular apical pacing has been described in many clinical scenarios ranging from acute severe MR immediately following pacemaker implantation to slow progression of MR in the setting of chronic right ventricular apical pacing [4-6].

The mechanism of MR with RV pacing is derived from intraventricular dyssynchrony. Pacing from the right ventricular apex induces an iatrogenic form of left bundle branch block as depolarization spreads from the apex to the base, as demonstrated by the patient’s electrocardiograms before and after dual-chamber pacemaker placement, several studies report detrimental effects of electrical dyssynchrony from RV pacing, including exacerbation of valvular dysfunction and heart failure [3, 4].

In this case, invasive hemodynamics obtained during PMVR demonstrated worsening of functional MR from septal dyssynchrony induced by RV apical pacing. The association between MR and right ventricular apical pacing has been described in many clinical scenarios ranging from acute severe MR immediately following pacemaker implantation to slow progression of MR in the setting of chronic right ventricular apical pacing [4-6].
al-chamber pacemaker placement (Figure 6). This abnormal left ventricular activation sequence causes delayed reduction of both the mitral annular size and regurgitant orifice size, leading to abnormal leaflet coaptation and enhanced MR [7].

Moreover, a hallmark of Ebstein’s anomaly is dysynchrony of the basal septum at the attachment site of the septal leaflet [8]. Although the patient had previously undergone surgical tricuspid valve replacement, residual septal dyskinesis may have also further contributed to worsened MR.

This case highlights the hemodynamic effects of right ventricular pacing in MR and demonstrates the potential utility of the MitraClip system as a feasible and effective salvage therapy option in refractory cardiogenic shock. Further experience and research is needed to clarify which patients can be hemodynamically significantly affected by right ventricular pacing.

Conflict of Interest

The authors have no conflict of interest relevant to this publication.

References
