Successful First-in-Man Concomitant Transapical Transcatheter Aortic and Mitral Valve Replacements for Severe Native Aortic and Mitral Valve Stenosis Using the Edwards Certitude Delivery System

Anwar Tandar, MD¹, Jason P. Glotzbach, MD², Frederick G.P. Welt, MD¹, Vikas Sharma, MD², Kelsee Browning, AGNP-C¹, Craig H. Selzman, MD², Abdulfattah Saidi, MD¹*, David A. Bull, MD²

¹ Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States
² Division of Cardiothoracic Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States

Abstract
Transcatheter aortic valve replacement (TAVR) has become the treatment of choice for high or intermediate risk patients with symptomatic severe aortic stenosis. Transcatheter mitral valve replacement (TMVR) for native mitral stenosis is still under investigation in clinical trials. Results from a global registry, however, show that TMVR in patients with severe mitral annulus calcification is feasible but associated with significant adverse events. Simultaneous TAVR and TMVR on native valves has only been reported twice. Here, we report the first case of simultaneous TAVR and TMVR for native aortic and mitral stenosis using the Edwards Certitude transapical delivery system.

Key Words
Native aortic stenosis • Native mitral stenosis • Simultaneous • Double valve • Transcatheter valve replacement • Transapical approach

Introduction
Transcatheter aortic valve replacement (TAVR) has emerged as the treatment of choice for patients with severe aortic stenosis who are deemed to be at high or intermediate risk for surgery [1, 2]. Transcatheter mitral valve replacement (TMVR) for inoperable severe calcific native mitral stenosis is currently under investigation in clinical trials [3]. Results from a global registry show that TMVR, when performed in highly selected patients, results in significant adverse events [4]. Simultaneous TAVR and TMVR of stenotic native valves has only been reported in two cases [5, 6]. Here, we report the first case of simultaneous TAVR and TMVR for severely stenotic native aortic and mitral valves in a high-risk patient using the Edwards Certitude transapical delivery system (Edwards Lifesciences, Irvine, CA, USA) (Figure 1).

Case Presentation
The patient was a 71-year-old man with symptomatic severe aortic stenosis (mean gradient, 53 mmHg; aortic valve area, 0.7 cm²; maximum aortic valve velocity, 4.1 m/s; Figure 2 and Figure 3) and heavily calcified severe mitral stenosis (mean gradient, 12 mmHg; mitral valve area, 1 cm²; Figure 4 and Figure...
5) with a Wilkins score of 12 and mean pulmonary artery pressure of 43 mmHg. His left ventricular ejection fraction was 44%, and he showed Class III New York Heart Association symptoms. His medical history also included coronary disease status post-coronary artery bypass graft, peripheral artery disease status post-femoral-femoral artery bypass, porcelain aorta, severe chronic obstructive pulmonary disease, type II diabetes mellitus, and sick sinus syndrome.

After evaluation by a multidisciplinary heart team, the patient was deemed to be a prohibitively high-risk candidate for surgical aortic valve replacement due to a Society of Thoracic Surgeons mortality risk score greater than 10% and the presence of a porcelain aorta on imaging studies. Balloon mitral valvuloplasty was contraindicated due to a high Wilkins score. Therefore, we made the decision to proceed with simultaneous TAVR and TMVR.

Valve analysis was performed using helical computed axial tomography (CT) scanning with 3mensio Structural Heart (3mensio Medical Imaging BV, Bilthoven, Netherlands) and OsiriX three-dimensional...
The CT scan also showed a porcelain aorta. The procedure took place under general anesthesia in a hybrid operating room. A Certitude delivery system was inserted into the apex through a limited left anterior thoracotomy utilizing 2-0 plegeted braided polyester sutures as mattress pursestrings (Ethicon, Somerville, NJ, USA). A 0.035” guidewire was advanced into the ascending aorta and then exchanged with an Extra Stiff Amplatz wire. The 26-mm SAPIEN 3 valve was advanced and deployed during rapid pacing (Figure 6). Transesophageal echocardiography (TEE) showed that the prosthesis was in an

reconstruction software (Pixmeo SARL, Bernex, Switzerland). This analysis demonstrated an aortic annulus area of 480 mm², which was suitable for a 26-mm Edwards SAPIEN 3 (Edwards Lifesciences, Irvine, CA, USA) valve. The mitral valve area was 286 mm², which was suitable for a 29-mm Edwards SAPIEN 3 valve.

Figure 4. Three-dimensional TEE showing a heavily calcified mitral valve with severe stenosis.

Figure 5. TEE four chamber view with color doppler showing severe mitral stenosis.

Figure 6. Fluoroscopy clip showing deployment of the SAPIEN 3 valve in the aortic position.
optimal position without paravalvular leak (Figure 7). The mean gradient across the prosthetic valve was 5.7 mmHg.

Subsequently, the TAVR delivery system was removed, and the Certitude sheath was kept in place. A 0.035” straight-tip wire was used to cross the mitral valve and then exchanged with an Inoue wire. To achieve maximum expansion, 4 mL was added to the 29-mm SAPIEN 3 balloon. A coplanar fluoroscopic view was obtained using the mitral annular calcification as a landmark. The valve was deployed during rapid pacing using fluoroscopic and live TEE guidance (Figure 8). TEE showed that the prosthesis was in an optimal position (Figure 9), with trivial paravalvular leak and a mean gradient of 3.5 mmHg. The left ventricle outflow tract gradient was 12 mmHg. Postdilation with an additional 2 mL (total of 6 mL) was performed to flair the atrial side of the Sapien valve and minimize the risk of valve migration. Prior to discharge (i.e., 5 days after the procedure), trans-thoracic echocardiography showed normal function of both prostheses without paravalvular leaks. At 2-month follow-up, the patient continued to do well. Follow-up transthoracic echocardiography showed no changes compared with prior study.

Discussion

TAVR has been found to be non-inferior to surgical aortic valve replacement in patients with severe atrial stenosis deemed to be at high or intermediate surgical risk [1, 2]. These patients often have concomitant mitral stenosis with a high Wilkins score, barring them from mitral balloon valvuloplasty. The option of performing TMVR of native mitral stenosis at the same time as TAVR, although not previously studied, has been reported in two cases [5, 6]. To the best of our knowledge, this is the first simultaneous TAVR and TMVR of native aortic and mitral valves stenoses utilizing a single transapical access with the Edwards Certitude delivery system.

Because is a complex and novel approach, selecting the appropriate candidate is key for success of this procedure. It is of utmost importance to obtain accurate measurements of both aortic and mitral annuli and to select the appropriate prosthesis size and minimize the risk of interference given the anatomi-
the critical nature of the aortic stenosis and in case of unexpected complications occurring during mitral valve intervention.

It is difficult to estimate the risk of mitral prosthesis migration. In the Bauernschmitt case [5], valve migration was not noted before the patient died from malignancy 9 months after implantation. In the Elkharbotly case [6], the reported 6-month follow-up was free of valve migration. Bapat et al. [8], in a valve-in-valve case, reported the migration of a SAPIEN prosthesis from the mitral position. In our case, we decided to hyperexpand the balloon in the mitral position to maximize valve fixation and minimize the risk of migration. Hyperexpanding the mitral prosthesis may theoretically cause compression of the aortic valve or left ventricular outflow tract obstruction. Fortunately, the postdeployment left ventricular outflow tract gradient was only 12 mmHg.

In conclusion, simultaneous TAVR and TMVR for native aortic and mitral valve stenosis may be safe in highly selected inoperable patients. The long-term safety and outcome of simultaneous TAVR and TMVR are not known, and more investigation is needed to validate this approach.

Conflict of Interest

The authors have no conflict of interest relevant to this publication.

References

Supplemental Media

Video 1. Aortic valve pre-transcatheter aortic valve replacement. View supplemental video at https://doi.org/10.12945/j.jshd.2017.026.17.vid.01.

Video 2. Aortic valve post-transcatheter aortic valve replacement. View supplemental video at https://doi.org/10.12945/j.jshd.2017.026.17.vid.02.

Video 3. Mitral stenosis pre-transcatheter mitral valve replacement. View supplemental video at https://doi.org/10.12945/j.jshd.2017.026.17.vid.03.
